抽签时先抽后抽(概率推算甲子)
抽签时先抽和后抽的中签机会均等吗
概率相同,不过掌控于谁手中不一定。极端的例子,二个人,抽两个签。只要第1个人抽完了,后一个人也就确定了不用抽了,二个人的概率都是1/二、不过呢这个概率都是第1个人产生的,第2个人中不中取决于第1自个的手是还是不是臭。
我们今天来讨论一个数学问题,抽签的先后是否会作用与影响你抽签的结果呢?
生活之中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,打比方说把3张电影票分给5个人,因为不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?答案是:均等,无论谁先抽都是公平的。
我们索性用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。那么第2个人抽中的概率怎么计算呢?
大家都清楚从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法;而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
抽签时先抽和后抽概率一样吗
抽签时先抽和后抽概率一样。
假设参加抽签的四个人为ABCD,字母的顺序对应着他们抽签的顺序。
A是第1个抽签的,他的中奖概率为1/四、B是第2个抽签的人,所以奖品有可能已经确定被A抽走了,而A中奖的概率为1/4,总之A没有将奖品抽走的概率为3/四、而假如A没有将奖品抽走,那么B中奖的概率就提高到了1/3,所以B的总体中奖概率就是3/4乘以1/3,等于1/4,显然,B和A一样,中奖概率都是1/四、
接着下面是C,计算方法和B一样,A和B已经抽了两次,所以奖品依然没有被抽走的概率为2/4,而假如奖品没有被抽走,C的中奖率为1/2,2/4乘以1/2就等于1/4,C的中奖概率也是1/四、最后是D,依照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/四、
抽签优缺点
抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,紧接着采用随机的方式方法任意抽取号码,直到抽足样本。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的优点是简单易行,缺点是当总体的容量特别大时,费时、费力,又不方便。假如标号的签搅拌得不均衡,会致使抽样不公平。
抽签时先抽和后抽中奖的几率是
抽签时先抽和后抽中奖的几率是相同的。抽签时不管谁抽到签都不打开,先抽和后抽的中奖概率是相同的;假如第1个人抽签后打开最终,则后面的人抽签中奖的概率与本题中的中奖概率是不一样的问题。
抽签时,先抽和后抽的人概率一样吗
概率相同,不过掌控于谁手中不一定。极端的例子,二个人,抽两个签。只要第1个人抽完了,后一个人也就确定了不用抽了,二个人的概率都是1/二、不过呢这个概率都是第1个人产生的,第2个人中不中取决于第1自个的手是还是不是臭。通常情况下来说依照固定的抽签规则,先抽和后抽的人的概率是相同的。
正确使用词语,能够让这一类抽签规则的表达,以及整一个过程的规范化更加标准,给人清晰明了的指导。
正确使用词语需须留意下面的分析:
(一)从词语的情感色方面进行辨析
色是指词义附带的某种倾向、情调;有的表现为感情上的,叫感情色。
依据感情色的区别可将词语分为褒义词、贬义词、中性词三类。
1.褒义词:具有肯定或赞许的情感的词语。如:鼓励、成果、抵御、聪明、节俭、呵护。
2.贬义词:具有否定或贬斥的情感的词语。如:煽动、后果、抗拒、狡猾、吝啬、庇护。
3.中义词:不预示褒贬的词语。如:鼓动、结果、抵抗。
(二)从词语的语体色方面进行辨析
词语除感情色之外,还有庄重和诙谐、谦敬和讽刺、委婉和直露以及文白、雅俗等色,固然意义相同或相近,但各适合使用于不同场合,叫作语体色。
主要表现为口语和书面语的不同。对话、文艺作品多用口语,口语具有通俗朴实生动的风格。书面语有文雅、庄重的风格,多用于郑重场合、理论文章或公文。
如:“表彰—表扬”、“贵宾—客人”、“陪同—陪伴”、“散步—溜达”、“马铃薯—土豆”,这几组词语义同而语体色不同,前者属于书面语,后者属于口语,使用时适合不同的场合。
语体色还有庄重和诙谐、谦敬和讽刺、委婉和直露等的区别。如不带感情色,用于与自己不亲近的人;而“逝世”则用于自己敬仰的对象。
“嘱咐”多用于临别场合,语气态度恳切;而“吩咐”多用于并不远离的对象,带有命令口气。
(三)从词语的意义方面辨析
1.词义涵盖的范畴不同。
如:“开垦、开拓、开辟”皆有“开发”之意,但“开垦”指用力把荒芜的土地开发为可耕种的土地;
“开拓”指在原来开发的基础上加以扩充;而“开辟”着重指新开发、新开创,词义范围较大。
2.词义侧重点不同。
如:“才能”和“才华”,都含有能力、特长之义,但“才能”着重指办事的能力或对知识、技能、窍门的运筹使用能力,
而“才华”则着重指在文学艺术方面显露出来的智力与特长抽签时,先抽和后抽的人概率问题是一个教科书范例级的古典概率论问题了。答案是:取决于先抽的人抽中签之后是还是不是马上打开看。假如先抽的人抽签之后并不马上打开看,而是等所有人都抽完之后再打开,那么先抽和后抽的人抽中某个签的概率是相同的。反之,假如先抽的人抽签之后马上打开看,那么后抽的人抽中某个签的概率就变了,由于这一时刻,后抽的人抽中某签的概率成了在给定“先抽的人抽过签”这个条件后来的“条件概率”。当然,不需要计算,凭直观也能知道,假如先抽的人没有抽中某签,那后抽的人抽中该签的条件概率就提高了;假如先抽的人已经抽中了该签,后抽的人抽中该签的条件概率就是0了。是的,我来计算一下,打比方说4个签一个中奖
first of all第1人,四分之一没话说
第2个人,(1-0。25)*(三分之一)
很明显,继续算第3自个的也是相同的,都是四分之一现在咱们来讨论一个数学问题,抽签的先后是否会作用与影响你抽签的结果呢?
快来看看答案吧!!!
生活之中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,打比方说把3张电影票分给5个人,因为不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?
答案是:均等,无论谁先抽都是公平的。
我们索性用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。那么第2个人抽中的概率怎么计算呢?
大家都清楚从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法;而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
抽签时先抽和后抽中签的几率是相等的还是不等的?
相等。
抽签无论谁先抽都是相等公平的。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
在生活和工作之中,我们还会遇见一类和抽签很像的事情,但这类问题与抽签问题并不相同。打比方说在单位开会或者团建的时刻,领路人经常会出其不意提出一些烧脑的问题,而面对如此问题,我们first of all应该弄清的是先回答还是后回答。
计算验证:
从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法。
而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
先抽签还是先排序?
均等,无论谁先抽都是公平的。
用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法。
而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。抽签选择是一种较公平的抉择方法,在不公布结果的情形下,抽签先后顺序是不会作用与影响中奖概率的。
抽签第1次与第2次不一样,哪次为准?
我去抽签求的同一个事,连抽两天抽的签一样再抽一次·抽到满意为止既然相信抽签就要一次定准与不准不管是好还是坏,你既然抽列两次那么第1次的当然不满意, 可是第2次的有你想要的答案不过里面的一些附带条件又并非你满意的,所以最终这个答案还是要你本人权衡。
既然相信抽签就要一次定准与不准不管是好还是坏,你既然抽两次那么第1次的当然不满意, 可是第2次的有你想要的答案不过里面的一些附带条件又并非你满意的,所以最终这个答案还是要你本人权衡。
抽签是咱们国家的民间风俗,是占卜的其中一种形式。现今的道观、和民间的庙宇,大多摆上签筒供人抽取签条问卜。抽签同八卦一样,是中国古代民间为了判断问问题与事项吉凶、祸福的一种通俗预测推算方式。而判断吉凶的根据是所得到其中第几签的签诗和其签诗的典故内容。
抽签基本原则
1。各地区民间抽签的签诗多数都是28个签组
成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,由于民间签的数字是以28星宿象来代表的。
60签的数字是以六十甲子来预示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。
2。按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的意图和内容,紧接着从签筒中任意抽一根签出来(有一些地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有一些地方称为茭)扔到地上,有一正面一反面的才算是这一签,要不然就得重新再抽。
上面的内容参考:知识混装大无极-抽签


